
ROBOCUPJUNIOR RESCUE 2021
TEAM DESCRIPTION PAPER

πthon πraten

Introduction

Team

Hello everyone,

we are Lukas Krämer and Jan-Niklas Freund from Wipperfürth in Germany. The Team πthon πraten
(πthon πrates in English) was founded in summer 2017 and has participated in RoboCup every single
year since then. In our team, Lukas is responsible in our team for programming the robot and testing
new ideas, while Jan comes up with new approaches to improve the performance of our robot. In the
following we are going to summarize the approaches of our robot and the development in both its
performance and our personal skills we acquired ourselves.

In 2018 we used a LEGO Mindstorms robot and two color sensors for linefollowing, but our focus has
always been on saving the victims because we considered that part the most fascinating one. That is
why we already thought a lot about the rescue area back then and spent hours over hours developing
a gripping mechanism with a collection system for the balls.

In 2019, we moved on to something more advanced and started getting into the world of
microcontrollers, custom sensors and better motors. We started building our first self-made robot
made from an aluminium chassis and did not use any LEGO parts despite the chains. Additionally, we
started to develop our own mounts for sensors and printed them with a 3D printer.

A year later, we realized that it takes a lot of time to have to re-engineer the whole chassis to only
make a small change on the robot, so we took a step back and used LEGO again to build our robot in
order to remain flexible. Nevertheless, we continued to use commercial sensors and an Arduino
because it allowed us to use significantly more sensors than with Mindstorms. 2020 was also the first
year that we used a Raspberry Pi and a camera, at least for line detection and intersections. The
performance of our robot was good enough to qualify for the RoboCup GermanOpens which
unfortunately could not take place due to the pandemic.

During lockdown, we used our free time to model a new robot in a CAD-program which we then 3d
printed afterwards. Furthermore, we improved the program from he last year and added the ability
to detect the victims and the rescue kit as well.

Project Planning

Overall Project Plan

As we have already mentioned, it was always our intention to be comparatively successful in the
rescue area since this could be a real life scenario, there are extremely many approaches to it and
from year to year new ideas keep coming up to improve the technique and technology from before.
It has always been our intention to take part in the GermanOpen at one point.

That is probably why it has always been our goal (which seemed impossible in the beginning to actively
search for the balls with a camera or some sort of sensor instead of driving through the evacuation
zone aimlessly and hoping to get one.

Today we can proudly say that actively recognizing victims is our personal milestone, because we have
worked on this for a long time and this ability makes our robot more or less unique. Although the
general evaluation of the camera image in 2020 to follow the line, was also a challenge, there are
significantly more tutorials, documentations, etc. that have made this work easier compared to the
victim search. More information on the exact implementation of the camera evaluation will follow in
this document under the heading “Software”.

Over the years, however, the exact analysis of the task and the set of rules also became more and
more important, as new rules were added and we had to adapt our robot or the software accordingly,
in order to be successful in the competition.

For example the rescue kit was something that challenged us in the beginning since we had no gripping
mechanism that could lift both a cube and a ball, which more or less forced us to think about a new
solution and to create a more advanced design. In addition to that, we had to implement a new
function in our program to search for blue color during linefollowing.

Integration Plan

Now let’s move on to the general technical implementation of our current robot. For a more detailed
explanation of the related fields, have a look at the “Software” or “Hardware” section, since we will
not go into detail here.

On the hardware side, our robot consists of a battery for power supply, a Raspberry Pi for camera
evaluation and a Teensy microcontroller for controlling the motors and reading out sensors. For the
driving mechanism, we use two ordinary dc-motors that were made compatible with LEGO chains
using a milled aluminum adapter. In addition, two servo motors are used to move the arm up and
down to pick up the rescue kit and the balls. Moreover, there is a laser sensor that can measure the
distance to objects and is used to recognize the obstacle during linefollowing and the walls in the
rescue area.
Last but not least, apart from the camera, there is actually only a gyro sensor worth mentioning, which
helps, for example, to turn by exactly 90 degrees at a green dot or to orientate the robot in the rescue
area.

Schematic of how our robot works:

Testing

When it comes to “normal” performance testing of our robot, we have to admit that your strategies
are quite usual. Of course, we try to optimize the time spend for testing a new feature as much as we
can by just testing the “new” things that could go wrong. When we for example implement a new way
of finding the exit of the evacuation zone, we comment out all the unnecessary code beforehand (like
following the line, detecting silver, searching for victims and evacuate them to the black corner).

But one solution about finding the most efficient way to search for the balls saved us a lot of time:

The function that actually detects the balls takes several parameters to specify and optimize the search
for our specific use case. The individual parameters range from the minimum/maximum radius of the
circle to highly complex aspects which the function needs to work properly. Therefore, also the
accuracy for our use case (detect silver/black balls with a diameter of around 5cm) fluctuates from no
detected victims at all, to an image full of big and small detected balls even if there isn’t a single ball
(see the pictures below). After a few hours of experimenting with different values, we came up with
a better idea. We took around 60 pictures from different angles, under different lighting situations
and with a varying amount of balls ranging from zero to the maximum of three possible ones.
Afterwards, we manually counted how many balls all the pictures included together and wrote a small
python script that tries (out) all different parameter combinations with our test footage. It keeps track
of how many balls were actually found per single run and compares it with our preset reference. After
30 minutes of tense waiting, we finally got a parameter combination that seemed to work best for our
scenario.

Here are some pictures for illustration:

Catastrophic recognition of the victims

Perfect result using the parameters our script suggested

Software

General software architecture

As you already know, we do not only use a Raspberry Pi for the camera evaluation, but also a Teensy
3.6 microcontroller to control the motors, measure the absolute orientation of the robot and the
distances to the obstacles. Therefore, we also need to write two separate programs, one in Python for
the Raspberry Pi to capture the image from the camera, detect the line, intersections, victims etc. and
one in C++ for the microcontroller in order to read out the sensors and control the motors. This may
sound like a bottleneck, but we needed the Teensy in the past for controlling the motors and
interfacing the sensors since the GPIO pins of the Raspberry Pi are a bit harder to use, some important
libraries for our sensors are not supported and we didn’t want the Raspberry Pi to do lots of small
tasks that we could outsource to another chip. In the near future however, we plan to design a new
circuit board/shield for the Raspberry Pi in order to control everything from it directly and get rid of
any sort of additional microcontroller and the (slow) serial communication between those two.

When it comes to the software implementation, you can say that most of the important things get
handled by the Raspberry Pi and the Teensy acts like a slave that just controls everything. During
linefollowing, the Raspberry Pi captures a frame from the camera in a low resolution and cuts out a
region of interest (ROI) for evaluation. If we process the whole image which consists of over 61000
unique pixels (320p * 192p = 61440p or in full resolution 2592p * 1944p = 5038848p), the FPS (frames
per seconds) would be extremely low and the robot would be forced to drive very slowly. In order to
process the image even faster and to handle noise like small dust particles or narrow gaps, we blur
the image before the actual evaluation using the “GaussianBlur” function from the OpenCV library.

Normal image blurred image and ROI

In addition to blurring the image, we also convert it from BGR to HSV color space because it is
easier to distinguish colors there:

Image in HSV color space

But now let’s finally move on with explaining the actual processing.

First, the Python program finds all black (and green, red and blue) contours and converts them into a
so-called binary image. In the binary image, everything is black except for the place where the contour
is located. Here again a photo where the program converted all green contours to a binary image:

Afterwards, the program checks whether there are some green contours (-> intersection) blue
contours (-> rescue kit), red contours (-> end of parkour) or black contours (-> line). Usually there are
only black contours, so the program starts drawing a rectangle around them and divides it into two
halves (please note that the Raspberry Pi doesn’t process the whole image, the image below is just
to demonstrate the working principle):

The blue line that divides the rectangle is the more or less optimal way our robot has to drive, so we
just wrote a function that calculates how far away the center of the robot is from the middle of the
contour. This number ranging from –160 to +160 gets send to the Teensy that controls the right and
left chain using two motors.

Furthermore, the Raspberry Pi sends the according commands to the Teensy when for example a
green contours arises that is on the left side of the blue line (-> robot has to turn -90°).

The same principle applies to all different sorts of contours despite the silver one to which I will write
something in the next paragraph.

Innovative solutions

As I have already mentioned, detecting silver contours is nearly impossible since there are a lot of
reflections from other objects like the robot itself or a spectator who wears a red pullover. That’s why
we had some trouble detecting the entrance of the evacuation zone because most of the time the
robot just went “crazy” as soon as the silver strip was in the ROI for processing. After experimenting
with all kinds of ideas, like placing a neon red foil in front of a bright led, so the silver strip would
reflect red and we could detect a red contour instead of a silver one, we finally decided to detect the
rescue area without the silver strip. We thought about what distinguishes the evacuation zone from a
normal 30x30 tile with a line on it and we found two unique features:

1. The front distance sensor should measure a distance between 90cm and 120cm
2. The camera can’t see a dark contour because the floor of the rescue area is white

So, we combined these pieces of information and used a second, comparatively big ROI, to search for
dark contours before the ROI for the linefollowing would detect silver and lead to undesired behavior:

If the Raspberry Pi does not find dark contours in ROI2, he sends a command to the Teensy that which
then checks if the distance is between 90cm and 120cm which would mean that there must be the
rescue area. Of course, this procedure is not perfect because there are some passages without a black
line in the parkours (like long gaps), but with the help of the distance sensor we rarely detect it
erroneously and we could improve our technique by using a second distance sensor to one side or by
driving 20cm forward when the robot thinks he “detected” silver and check again if there are no
contours in darker color.

The program of the Raspberry Pi in a structure diagram:

Hardware
As you may imagine, the camera is the most important sensor on our robot, because it does not only
detect the line, intersections etc., but also the victims in the evacuation zone. Theoretically, we could
use any camera that features a USB interface, but we decided to use the normal Raspberry Pi camera
V2 since there are lots of resources on the Internet and we can interface the camera without additional
drivers. As we have already mentioned, the camera image gets processed by the Raspberry Pi, which
then passes the relative line position to a Teensy 3.6 microcontroller through a serial connection. The
Teensy however, acts like a slave that controls our motors (Pololu 20D) with the help of an L293d h-
bridge in order to drive the robot.

Our Robot has a 7,4V, 1200mah Li-ion battery underneath, which has been perfectly balanced, so the
robot has an ideal center of gravity and can climb up the ramps without a problem.

However, the different devices of the robot need different amounts of voltages, for example our
motors need 12V, whereas the rest needs 5V which is why we use a boost-converter and a buck-
converter to step the voltage up and down .

We also have two different servo motors, which are used for the gripper. One is to raise the gripping
mechanism and the second one to loose and tighten the rope (see the picture below):

One of the things we made ourselves is a connector between our Pololu 20D motor and our Lego
chains, which we will get to talk about later. Our problem was always that either the motors were not
good enough or the chains had too little grip. It was not possible to have both at the same time, so we
wondered if there existed an adapter for the motors which would allow us to screw Lego parts onto
them, but there wasn't one, so we milled it ourselves from a piece of aluminum.

We also developed a gripper ourselves. There were some teams with a similar gripper that we were
inspired by. But of course we still had to design it and print it with our 3D printer. The idea came from
the fact that we used to have a huge gripper and a tank with which we always collected several balls
at the same time. This was not good, because the balls have to be put into the corner in a certain
order, first the living ones and then the dead ones. With the new gripping mechanism and the fact
that we now search for bullets with the camera, it has become much easier.

Let's move on to the chains. We have been part of competition for four years and know a few teams
by now. They all say that it is always a problem to have the right chains. One could of course use tyres,
but we had bad experiences with those in our first year. Due to this we decided to use normal Lego
chains and cover them with rubber bands. We tried a lot of things, like designing them ourselves and
3D printing them, but they had no grip. Then we tried rubber hoses and many other things, but finally
we ended up with Lego chains covered with rubber bands as our best option.

Mechanical/ Electronic Design and Manufacturing

In the following we will explain the rough construction of our robot. Its construction is quite simple.
Everything starts with the camera, which is installed in the front in a self-designed holder with a led
strip. Then it continues with the Raspberry PI, which lies at the bottom of the base, and from there it
goes to the Teensy, that lies slightly above the Raspberry. A distance and gyro sensor are also installed
there. You can easily see in the picture below. Take a look underneath the robot, where only the
battery is installed, because it is quite large and heavy. The robot gets the current through cables that
lead to a buck and boost converter, which then passes on the correct voltage (12V or 5V) to the
corresponding devices. Finally, only the rear part of the robot remains, where the rescue functions are
located, that contain two servos and the gripper.

All of the important modules are listed and explained in “Hardware”, including everything about our
rescue mechanism. Moreover all electronic designs are named there.

Performance evaluation
First of all, there are many special features about our robot, one of them is that everything about our
robot is self-built. One example is the self-soldered circuit board, which actually took several attempts
and hard work in Lukas’ basement. Or another self-produced part on our robot is the 3D printed
camera mount, which is also self-designed. We created a 3D printer at school a few years ago, and
Lukas now has one at home, too. We did this because we always had high standards and parts from
LEGO or others did not always give us the quality we wanted. What we really like about our robot is
that it is able to search for the victims by using a camera since last year. We especially like this because
only a few teams can do this and it is really amazing to see how the robot searches for the bullets
every time it turns around and every time it finds one, we are verry happy because it has worked one
more time. The rescue area is one of the hardest aspects to program, because there are so many
variables that you have to take into account, for example when new rules are released.

But to be honest there are some things we still have to improve. Among them there are three
noticeable points, it could be that there are more and of course a robot is never perfect, but we will
always give our best. One point is the slow speed in general, but especially when searching the victims.
Unfortunately we do not have a solution for this yet, because it is difficult to find the right ratio of
correct driving and fast driving. If you want to make the robot faster, there is always the danger that
it does not manage the parkour or needs several attempts.

In addition, the robot drives partly jerky, that probably comes because we do not yet now all the
values exactly, one would have to optimize them. But this needs several attempts, for which we had
little time.

And one of the things we also noticed is that the robot often recognizes the obstacle as a black line.
We suspect that it could be because the camera looks very far to the side and therefore recognizes
the grey/black obstacle as lines. If we knew that for sure, we would fix it quickly.

All in all, we are quite satisfied with the performance of the robot and of ourselves and we would
never have dreamed that we would ever get this far. But now we have made it and we will give
everything to get even further.

Conclusion
To summarize this document, you can say that we, as most other teams, worked hard on our current
robot and that we progressed from total “newbies” with LEGO Mindstorms to something more
advanced. Furthermore, we can finally detect the victims with a camera, but we still need to improve
our program, for example to distinguish between dead and living victims, drive a bit smoother and not
that jerky and avoid processing pauses when searching the balls. Since we didn't have enough time to
replace the Teensy this year, the next step after this competition will be to start designing a new board
and then to only use a Raspberry Pi to get rid of the transmission between Raspberry Pi and Teensy
and thereby eliminate the small pauses in the evacuation zone.

If you have got any further questions, please do not hesitate to ask for clarification via mail
(robocup.evb@gmail.com).

mailto:robocup.evb@gmail.com

Reference
● Our YouTube channel
● Our website (in German and not up-to-date
● OpenCV documentation
● Linefollower tutorial using OpenCV

https://www.youtube.com/channel/UCC9BH-tkFcYVH9Up8JBV4LQ
http://kraemer123.de/
https://docs.opencv.org/master/
https://www.youtube.com/watch?v=tpwokAPiqfs

	Introduction
	Team
	Hello everyone,
	we are Lukas Krämer and Jan-Niklas Freund from Wipperfürth in Germany. The Team πthon πraten (πthon πrates in English) was founded in summer 2017 and has participated in RoboCup every single year since then. In our team, Lukas is responsible in our t...
	In 2018 we used a LEGO Mindstorms robot and two color sensors for linefollowing, but our focus has always been on saving the victims because we considered that part the most fascinating one. That is why we already thought a lot about the rescue area b...
	In 2019, we moved on to something more advanced and started getting into the world of microcontrollers, custom sensors and better motors. We started building our first self-made robot made from an aluminium chassis and did not use any LEGO parts despi...
	Overall Project Plan
	Integration Plan
	Testing
	Software
	General software architecture
	Innovative solutions
	Hardware
	Mechanical/ Electronic Design and Manufacturing
	Performance evaluation
	Conclusion
	Reference

